Donner du sens à la science

A propos

À travers différents projets mêlant plusieurs disciplines, ce blog vous invite à découvrir la recherche en train de se faire. Des scientifiques y racontent la genèse d’un projet en cours, leur manière d’y parvenir, leurs doutes… Ces recherches bénéficient du label « Science avec et pour la société » du ministère de l’Enseignement supérieur et de la Recherche.
Pour en savoir plus, lire l'édito.

Les auteurs du blog

Par le réseau de communicants du CNRS

A la une

La nage bactérienne et la discrète révolution de la matière active
06.06.2024, par Samuel Belaud, Délégation Rhône Auvergne
Mis à jour le 06.06.2024

Connues pour leur capacité de nage autonome et leurs intrigants comportements collectifs, les bactéries passionnent les physiciennes et physiciens. En décryptant leurs stratégies singulières de déplacement, une équipe de recherche ouvre des perspectives inédites pour l’utilisation de la matière et la conception de nouveaux matériaux. 

Les bactéries pèsent pour près de 15 % de la masse totale des êtres vivants dans la biosphère. Où qu’elles agissent, depuis notre microbiote intestinal jusque dans le sous-sol océanique, elles explorent leur environnement à l’aide de leurs flagelles, comme un nageur qui usent du battement de ses jambes pour parfaire son déplacement dans une piscine.  

Cette nage, très spécifique, que les bactéries opèrent de manière autonome intéresse de nombreux scientifiques. Ces micro-organismes peuvent en effet se déplacer en ligne droite, en courbe, à contre-courant, et même faire des demi-tours. Lorsqu’elles forment un groupe, ces micronageuses adoptent des comportements collectifs tout aussi fascinants, qui restent mal compris et font l’objet d’investigations poussées dans le domaine de la physique de la matière active. 

Autonomie et sens du collectif  

Thomas Gibaud est physicien, chercheur CNRS au Laboratoire de Physique de l’ENS de Lyon1. Il appartient à la communauté des scientifiques qui travaillent sur des particules du vivant, dites ‘’actives’’ en opposition aux particules passives (comme des protéines ou des colloïdes) qui ne possèdent pas de capacité motrice intrinsèque. Son quotidien ? « Observer leurs mouvements, pour les modéliser et former des assemblages originaux ».  

Dans le cas de la matière non-active, « les scientifiques utilisent l’agitation thermique pour contrôler et dynamiser de petites particules dans des fluides à l’échelle nanométrique », rappelle-t-il. C’est le mouvement Brownien. Or, lorsqu’une colonie de bactéries est rassemblée dans ce fluide (on parle de suspension bactérienne), chaque organisme apporte une puissance mécanique autonome au milieu, qui est bien supérieure à l’agitation thermique. Des dynamiques collectives se mettent alors en place dans cette matière active, répondant à des lois de conservation encore parées de mystères.  

Les travaux menés par Thomas Gibaud et ses collègues consistent à étudier et décrypter les déplacements des bactéries Escherichia coli et leurs interactions avec d’autres petites particules colloïdales4 en suspension dans une solution liquide. Ces bactéries ont la particularité d’opérer des mouvements successifs de run and tumble. C’est-à-dire qu’elles se déplacent d’abord en ligne droite grâce au mouvement synchrone de leurs flagelles (run), puis ces flagelles se reconfigurent et font tourner la bactérie sur elle-même (tumble), avant de repartir dans une nouvelle direction (run).  

Bactéries nageuses. © Emilie JosseBactéries nageuses. © Emilie Josse

Des footballeuses hors-pair 

Les scientifiques placent les bactéries « dans une cavité avec des parois perméables à l’oxygène pour les maintenir en vie et pour qu’elles puissent faire ces déplacements », précise Thomas Gibaud. Ils observent ensuite les bactéries et les colloïdes à l’aide de la microscopie par fluorescence et reconstruisent leurs trajectoires et leurs interactions grâce à un algorithme de suivi (tracking). 

« J’aime comparer mes expériences à une partie de football, sourit le chercheur lyonnais, où les bactéries jouent le rôle du joueur et les particules celui du ballon ». En l‘absence de joueurs, les ballons se déplacent aléatoirement dans le milieu du fait de l’agitation thermique. Mais dès que des bactéries actives entrent en jeu, les ‘’frappes’’ (les collisions) qu’elles opèrent sur les particules entrainent ces dernières dans « des déplacements rapides et erratiques, qui diffèrent de ceux dus à l’agitation thermique », souligne le physicien .  

Les particules colloïdales influencées par les bactéries nageuses. © Emilie JosseLes particules colloïdales influencées par les bactéries nageuses. © Emilie Josse

Les scientifiques sont parvenus à caractériser les interactions dynamiques entre bactéries et particules, ainsi qu’à mesurer certains effets collectifs de nage bactérienne. Dans le détail, ils ont établi un modèle de prédiction de la géométrie de ces trajectoires et de la diffusion colloïdale à long terme. Leurs résultats ont été publiés dans la revue Soft Matter en février 2020. L’intérêt ? Ouvrir la voie à une nouvelle famille de matériaux « vivants », alimentés par le mouvement des bactéries, capables d’interagir avec leur environnement et de structurer de manière autonome les colloïdes qu’elles rencontrent. 

Vers des matériaux vivants ? 

« Les matériaux vivants ne sont pas encore près d’exister », pondère prudemment Thomas Gibaud. Ses travaux montrent, en outre, que ce type de système demeure fragile et « difficile à contrôler ». Néanmoins, les scientifiques ambitionnent d’aller plus loin dans la conception de systèmes actifs. « Nous savons désormais que les bactéries représentent de bons moteurs potentiels pour mettre en mouvement des colloïdes avec une dynamique différente de celle engendrée par l’agitation thermique », rappelle le chercheur.  

Alors, dans une nouvelle phase de travaux, son équipe souhaite capitaliser sur les déplacements provoqués par les bactéries « pour autoorganiser les colloïdes vers de nouveaux états de la matière ».  In fine, les scientifiques ambitionnent de créer des structures mésoscopiques autonomes, qui utilisent la synergie des bactéries, repoussant ainsi les limites de la matière active.  

À l’intersection de la physique, de la biologie et de l’ingénierie, ces travaux rendent envisageable l’exploitation de la puissance mécanique des bactéries et de leurs effets collectifs. Si cette phase fondamentale de recherche est concluante, il ne sera plus impossible d’imaginer des fluides se mélangeant d’eux-mêmes dans l’exiguïté de nanopuces ou de systèmes micro-fluidiques, le tout sans intervention extérieure. Ces perspectives, autrefois confinées aux pages de la science-fiction, pourraient bien transformer notre perception de la matière et bouleverser le champ disciplinaire de la physique de la matière active. 

Cet article fait partie du dossier thématique "Physique : une recherche multimillénaire, sans cesse renouvelée" réalisé dans le cadre de l'Année de la Physique, en collaboration avec Pop’Sciences - Université de Lyon (mai 2024).

--------------------
Ces recherches ont été financées en tout ou partie, par l’Agence nationale de la recherche (ANR) au titre du projet ANR-StruBaDy-AAPG2018. Cette communication est réalisée et financée dans le cadre de l’appel à projet Sciences Avec et Pour la Société - Culture Scientifique Technique et Industrielle pour les projets JCJC et PRC des appels à projets génériques 2018-19 (SAPS-CSTI-JCJC et PRC AAPG 18/19).

Notes
  • 1. Unité de recherche CNRS, ENS de Lyon

Commentaires

0 commentaire
Pour laisser votre avis sur cet article
Connectez-vous, rejoignez la communauté
du journal CNRS