Sections

Quadruplexes d’ADN : les nouvelles stars de la génétique

Quadruplexes d’ADN : les nouvelles stars de la génétique

17.10.2016, par
Expérience d’immunodétection permettant la visualisation des quadruplexes d’ADN (en rouge) et des noyaux cellulaires (en bleu) en cellules humaines fixées.
Mis en évidence dans des cellules humaines il y a peu, les quadruplexes d’ADN focalisent l’attention des biologistes, des chimistes et des médecins. De quoi s’agit-il exactement ? Pourquoi intéressent-ils tant les chercheurs ? Zoom sur un domaine de recherche en pleine effervescence.

La plupart d’entre nous n’en ont jamais entendu parler. Et pourtant… Les quadruplexes d’ADN pourraient obliger à réécrire certains passages des manuels de biologie. Mieux, ils pourraient s’avérer capitaux dans la lutte contre plusieurs maladies graves, cancer en tête. Une chose est sûre : depuis la démonstration de l’existence de ces éléments dans les cellules humaines en 20131, la recherche dans ce domaine explose !
 
« Grâce à l’étude des quadruplexes, on est littéralement en train de redéfinir le code génétique. Ce sont comme des interrupteurs génétiques qui offrent un nouveau niveau de régulation des gènes », s’enthousiasme le chercheur David Monchaud, de l’Institut de chimie moléculaire de l’université de Bourgogne2.

Des structures inhabituelles de l’ADN

Concrètement, les quadruplexes sont des structures non usuelles de l’ADN. Cette molécule est classiquement constituée de deux brins enroulés l’un sur l’autre, formés chacun d’un enchaînement de « bases nucléiques » (guanine, G ; adénine, A ; cytosine, C ; et thymine, T), et maintenus ensemble grâce à des liaisons faibles entre les bases.

Grâce à l’étude des
quadruplexes, on
est littéralement en
train de redéfinir
le code génétique.

C’est la fameuse structure en double hélice  (ou « duplexe »), découverte en 1953 par les biologistes James Watson et Francis Crick grâce aux travaux de Rosalind Franklin. Les quadruplexes d’ADN, eux, sont des structures d’ADN composées non pas de 2, mais de 4 brins tournant les uns sur les autres. « Ils se forment par repliement de l’ADN quand il est riche en G : en s’auto-assemblant entre elles, les bases G conduisent à une structure à 4 brins riches en G. D’où l’autre nom des quadruplexes : G4 », précise le chercheur.

Autre caractéristique importante des G4 : contrairement à la double hélice d’ADN – qui est, elle, une structure permanente –, ce sont des structures très dynamiques, voire furtives. « C’est une des raisons pour lesquelles leur existence dans les cellules humaines n’a été démontrée que depuis peu », souligne David Monchaud.

Exemples de structures secondaires d’ADN.
Exemples de structures secondaires d’ADN.

Une présence chez tous les êtres vivants

Les données les plus récentes suggèrent que les G4 peuvent se former au niveau de pas moins de… 716 000 endroits de notre génome ! Cela dit, ils semblent plus fréquents au niveau des télomères, ces zones situées aux extrémités des chromosomes et qui en assurent la stabilité. Et aussi au niveau des promoteurs de gènes (régions à proximité des gènes et indispensables à leur expression), notamment des promoteurs d’oncogènes, dont la surexpression favorise le développement des cancers.
 
Par ailleurs, d’autres molécules génétiques peuvent également former des G4 quand elles sont riches en G : les ARN, des molécules proches chimiquement de l’ADN mais constituées d’un seul brin, indispensables à la fabrication des protéines. Enfin, l’existence des G4 est maintenant suspectée dans tous les types de cellules vivantes : celles des humains, mais aussi celles des plantes, ou encore des virus et des bactéries.

De nombreux mécanismes biologiques concernés

Si les G4 intéressent tant les chercheurs, c’est à cause de leur possible implication dans plusieurs processus biologiques clés, indispensables au bon fonctionnement de la cellule. Parmi ceux-ci : la stabilité des chromosomes ; la « réplication » de l’ADN, mécanisme survenant avant la division des cellules, permettant d’obtenir, à partir d’une molécule d’ADN, deux molécules identiques ; la « transcription » où un brin de l’ADN est copié en une molécule d’ARN ; la « traduction », processus où l’ARN est utilisé pour permettre la synthèse de protéines ; etc.

On sait depuis peu
que les G4 peuvent
être des éléments
positifs pour
la cellule. 

« Au départ, les chercheurs considéraient que les G4 étaient forcément des éléments perturbateurs pour la cellule », souligne la biologiste Marie-Noëlle Prioleau, de l’Institut Jacques Monod3. Par exemple, plusieurs travaux ont suggéré qu’ils constituent des sortes de nœuds sur l’ADN entravant le fonctionnement d’une protéine indispensable au processus de réplication : l’ADN polymérase.

Or, « depuis peu, on sait qu’ils peuvent aussi être des éléments positifs », poursuit la chercheuse. Ainsi, lors d’une étude publiée en 20144, elle a montré avec son équipe que, si les G4 peuvent empêcher la réplication lorsque celle-ci est en cours, ils sont en revanche cruciaux pour l’initiation de ce même processus.

Une piste pour le traitement de maladies graves

À cause de leurs possibles rôles dans les processus biologiques clés cités plus haut, les G4 pourraient être impliqués dans le développement de plusieurs maladies graves : les cancers, certaines maladies rares (syndrome de l’X fragile, etc.), neurodégénératives (maladie de Charcot, démences fronto-temporales, etc.), ou infectieuses (herpès, sida, etc.). D’où l’idée de tenter de développer des traitements les ciblant pour lutter contre ces différentes pathologies. Une  perspective particulièrement motivante pour David Monchaud, « surtout dans le cas des maladies rares et neurodégénératives, pour lesquelles il n’existe pas ou peu de stratégies thérapeutiques à ce jour ».

Exemple de structures de quadruplexes d’ADN
Exemple de structures de quadruplexes d’ADN

Mais avant d’arriver à exploiter les pouvoirs des G4, les chercheurs devront répondre à moult questions encore en suspens : où, quand et comment ces structures apparaissent au cours de la vie d’une cellule ? Quels sont les systèmes régulant leur formation ? Pourrait-on les contrôler ? Pour quelles retombées thérapeutiques ? Etc.
 
« L’un des défis actuels de la recherche sur les quadruplexes est de développer des outils d’imagerie pour les visualiser en direct dans les cellules vivantes afin de comprendre leur dynamique dans la cellule », explique David Monchaud, qui travaille à cette fin5. Rien qu’au CNRS, les G4 impliquent plusieurs dizaines d’équipes de chimistes, biologistes et médecins, travaillant un peu partout en France.
 
« C’est un domaine de recherche encore émergent mais en développement très rapide ; à tel point qu’il nous est parfois difficile, même à nous, d’en suivre l’évolution, constate David Monchaud. C’est ce qui rend les G4 si passionnants, parfois décourageants, mais toujours scientifiquement stimulants. »
                 

 

Notes
  • 1. « Quantitative visualization of DNA G-quadruplex structures in human cells », Giulia Biffi et al., Nature Chemistry, vol. 5 : 182-186, publié en ligne le 20 janvier 2013.
  • 2. Unité CNRS/Univ. de Bourgogne.
  • 3. Équipe Domaines chromatiniens et réplication (CNRS/Univ. Paris Diderot).
  • 4. « G4 motifs affect origin positioning and efficiency in two vertebrate replicators », Anne-Laure Valton et al., EMBO J., 1er avril 2014, vol. 33 (7) : 732-746.
  • 5. « Direct visualization of both DNA and RNA quadruplexes in human cells via an uncommon spectroscopic method », Aurélien Laguerre et al., Scientific Reports, vol. 6 : 32141, publié en ligne le 18 août 2016.
Aller plus loin

Auteur

Kheira Bettayeb

Journaliste scientifique freelance depuis dix ans, Kheira Bettayeb est spécialiste des domaines suivants : médecine, biologie, neurosciences, zoologie, astronomie, physique et nouvelles technologies. Elle travaille notamment pour la presse magazine nationale.

Commentaires

1 commentaire

Bonjour, En matière scientifique, il na faut pas avoir d'idée préconçue: le nombre de brins d'ADN potentiellement pourrait croître jusqu' à 12 brins. (cf. Pléiadiens ) Le problème est que nous ne connaissons pas tous les facteurs favorables à cette révolution génétique (et que la sécurité sociale n'encourage pas à faire un examen scientifique du génome): 1. l' alimentation (le type de farine de blé, le régime carné ou végétarien ...) 2. la pollution de l'air 3. la pollution électromagnétique Avant de ressembler à un extra-terrestre capable de se déplacer dans la galaxie, il y a encore des progrès à faire notamment en Mathématique ,Physique et en Génétique...
Pour laisser votre avis sur cet article
Connectez-vous, rejoignez la communauté
du journal CNRS