Vous êtes ici
Un Univers sans matière noire?
Un peu plus d’un siècle après qu’Einstein a débarrassé la physique de l’hypothèse qu’une substance inconnue, l’éther, remplissait l’Espace, l’astrophysique et la cosmologie sont à nouveau confrontées à une curieuse énigme : notre Univers serait rempli à 95 % d’une matière noire et d’une énergie noire dont nul n’a su jusqu’ici expliquer ni l’origine ni la nature. Accepter l’existence d’un secteur sombre aussi envahissant qu’insaisissable reste pour une majorité de physiciens le moyen le plus évident de rendre compatibles l’ensemble des données astrophysiques à leur disposition et la théorie de la relativité générale. Seulement voilà : après quarante ans de traque intensive, aucun instrument ni aucune expérience n’ont permis d’observer la moindre structure cosmique ou la moindre particule pouvant endosser le rôle de cette masse invisible.
Sans parler de crise, cette situation est très frustrante pour une discipline dont l’objectif est d’aboutir à une théorie décrivant exhaustivement le contenu de notre Univers et son évolution. Le physicien Gabriel Chardin, qui a reçu la médaille d’argent du CNRS en 2007 pour ses travaux sur la matière noire, notamment au sein de la collaboration internationale Edelweiss1, pense qu’il serait possible d’en sortir en envisageant, comme Einstein en son temps, un nouvel accroc au sens commun : accepter qu’il existe des masses négatives dans notre Univers, tout comme il existe des charges électriques positives et négatives. À partir de là, il envisage un nouveau modèle cosmologique avec un Univers comportant autant de matière que d’antimatière, où il n’est plus nécessaire de faire appel aux concepts de matière ou d’énergie noire. « Cet Univers, développé depuis dix ans avec Aurélien Benoit-Lévy, est encore très loin d’être accepté comme une alternative au modèle standard cosmologique, avec matière noire et énergie noire, reconnaît Gabriel Chardin, qui développe en détail ses idées dans l’essai L’Insoutenable gravité de l’Univers. Mais il ne repose pas que sur des spéculations, il reproduit de façon assez étonnante un grand nombre de données dont on dispose et fait des prédictions qui pourront être testées dans les prochaines années, voire les prochains mois. »
Des anomalies dans la Chevelure de Bérénice
Mais pour quelles raisons la communauté scientifique en est-elle venue à considérer comme nécessaire l’existence d’un secteur sombre ? Et quelles sont celles qui poussent aujourd’hui un nombre croissant de chercheurs à envisager des hypothèses alternatives ? Le premier à avoir soulevé, dès 1933, l’hypothèse d’une masse invisible est l’astrophysicien suisse Fritz Zwicky (1898-1974). En observant la Chevelure de Bérénice, où il mesurait les vitesses des galaxies qui orbitent dans l’amas du Coma, il calcula que la gravité exercée par la matière visible ne pouvait pas compenser la force centrifuge qui s’exerçait sur ces galaxies : elles auraient dû être expulsées de l’amas comme d’un manège tournant trop vite. Il en déduisit la présence d’une matière obscure, dont la masse était bien plus importante que celle de la matière visible. Il s’écoula plus de trente ans avant que son intuition soit confirmée par l’étude que Vera Rubin mena sur les profils de rotation à l’intérieur des galaxies. Le seul moyen d’expliquer ce profil dans le cadre des lois de la gravité était d’admettre que ces galaxies étaient plongées dans un halo de matière noire six fois plus lourd que leur contenu visible. Ces résultats ont ensuite été confirmés et de nombreuses autres observations indépendantes ont accumulé les indices en faveur de l’existence d’une matière noire. Quoique concordants, ces différents indices n’en sont pas moins indirects. D’autant qu’aucune des formes de matière sombre connues (planètes, neutrinos, trous noirs) ne semblant pouvoir contribuer significativement à cet excès de masse, la matière noire ne peut relever que d’une physique encore inconnue.
Modifier les lois de la gravité
Cette matière, ou les mystérieuses particules qui la composent, des physiciens du monde entier les traquent donc depuis quarante ans, soit dans l’Espace, soit dans des accélérateurs comme le LHC, soit à l’aide de détecteurs de plus en plus sensibles. L’ennui est qu’ils n’ont jusque-là rien découvert. Ce qui permet certes aux théoriciens de contraindre un peu plus les caractéristiques possibles de cette matière exotique, mais suscite aussi de plus en plus de doutes quant à son existence. Dès 1983, le physicien israélien Mordehai Milgrom s’est rendu compte qu’il n’y aurait plus du tout besoin d’invoquer la moindre matière noire… à condition de modifier les lois de la gravité newtonienne. Notant que ces lois n’ont en fait été testées et vérifiées que dans les champs gravitationnels relativement forts de notre Système solaire, il propose de les remanier lorsqu’elles s’appliquent aux corps évoluant dans des champs très faibles, ceux qui règnent dans l’Espace intersidéral.
« Cette théorie, baptisée Mond (Modified Newtonian Dynamics), prédit bien le profil des vitesses dans les galaxies. Le problème est qu’à ce stade on ne dispose d’aucun moyen de la tester expérimentalement, note Gabriel Chardin qui est par ailleurs président du Comité des très grandes infrastructures de recherche au CNRS. L’engin le plus éloigné de nous, la sonde Voyager, est soumis à un champ gravitationnel cent millions de fois plus faible que celui auquel il était soumis à la surface de la Terre, mais c’est encore mille fois plus fort que ce à quoi il serait soumis dans des champs dits “faibles” ! »
Faute de cette preuve expérimentale, la majorité des chercheurs hésitent à remettre en question des lois qui, depuis Einstein, n’ont jamais été mises en défaut. D’autant que si Mond peut nous débarrasser de la matière noire, cette théorie est de toute façon incapable de répondre à une nouvelle énigme posée par la gravité : la découverte en 1998 de l’accélération de l’expansion de l’Univers, interprétée comme la manifestation d’une sorte de gravité répulsive.
Comme la nature de ce phénomène mystérieux restait inexpliquée, les physiciens l’ont traité comme la matière noire : ils l’ont rajouté à la liste de leurs « inconnus connus » et en ont mesuré les effets. Ils ont appelé énergie noire cette nouvelle composante mystérieuse. Les mesures du satellite Planck indiquent que cette énergie noire représente aujourd’hui un peu plus des deux tiers de l’énergie contenue dans l’Univers, la matière noire environ un quart et la matière connue à peine un vingtième. En acceptant cette curieuse composition, les cosmologistes ont pu élaborer le modèle standard cosmologique. Un modèle qui, tout en restant compatible avec la relativité générale et les observations, s’efforce de décrire de manière cohérente l’histoire de l’Univers du Big Bang à nos jours.
De l’antimatière dans le vide intergalactique ?
« S’il reste la solution de référence pour la majorité des physiciens, à mon sens comme dans l’esprit d’un nombre croissant de mes collègues, le modèle standard cosmologique possède plusieurs aspects très inélégants, nuance Gabriel Chardin. Il marche assez bien, c’est vrai, mais il apparaît de moins en moins vraisemblable dans sa composition, et compte un trop grand nombre de paramètres libres, qu’il faut réajuster à chaque nouvelle observation. Bref, quelque chose cloche dans l’Univers qu’il décrit… » Et c’est pour cette raison que de nouveaux modèles ont récemment été proposés par des théoriciens comme André Maeder, de l’université de Genève, ou Thomas Buchert, du Centre de recherche astrophysique de Lyon2 : des Univers n’ayant besoin ni d’énergie noire, ni de matière noire pour expliquer les observations actuelles.
C’est également le cas de l’Univers de Dirac-Milne élaboré par Gabriel Chardin. Celui-ci le fait reposer sur deux hypothèses révolutionnaires. Il considère d’abord que cet Univers contient autant de matière que d’antimatière, et que l’antimatière possède une masse gravitationnelle négative. « La disparition totale, du moins apparente, de l’antimatière de notre Univers demeure à ce jour un autre des grands mystères du modèle standard : celui-ci indique pourtant que l’Univers comprenait pendant ses tout premiers instants après le Big Bang autant de matière que d’antimatière, insiste-t-il. Dans l’Univers de Dirac-Milne, plus besoin d’expliquer la disparition de l’antimatière : elle est toujours là, cachée dans les vides intergalactiques. » La supposition que l’antimatière possède une masse négative est une supposition plausible, car, à ce jour, aucune expérience n’a pu mesurer la masse de l’antimatière. « À l’échelle atomique, si on le compare à l’électromagnétisme ou à l’énergie cinétique des particules, l’effet de la gravité est négligeable, explique le physicien. On sait produire depuis plus de vingt ans des atomes d’antihydrogène, mais on vient tout juste de trouver le moyen de les ralentir suffisamment pour pouvoir bientôt les peser. » (Lire l’encadré ci-dessous.)
Des masses négatives dans l’Univers ?
Les théoriciens ont en tout cas démontré que l’existence de masses négatives est parfaitement compatible avec la relativité générale, même si les mouvements qu’auraient ces masses les unes par rapport aux autres sont très étranges : tandis que les masses positives s’agrègent entre elles, les masses négatives se repoussent et s’écartent les unes des autres! « Dans un tel Univers, sous l’effet de la gravité, la matière – de masse positive – s’agrège et forme de grandes structures. En revanche, les particules d’antimatière, de masse négative, s’étalent en gaz froid dans ce que nous prenons pour de grands vides cosmiques. » Des vides qui, en s’étalant, et en repoussant les structures de masse positive, expliqueraient, sans avoir besoin d’énergie noire, l’expansion de l’Univers telle qu’elle est observée.
Par ailleurs, le fait de supposer qu’existent des particules de masse positive comme négative a un autre effet inattendu : il crée une polarisation du vide qui modifie les équations de la gravité. Celles-ci présentent alors une grande similarité avec celles de la théorie Mond. On peut dès lors se passer de l’hypothèse de la matière noire pour expliquer la rotation des galaxies. « En l’état, le modèle d’Univers de Dirac-Milne reste hautement spéculatif, mais les valeurs auxquelles il aboutit sont étonnamment proches de celles déjà mesurées par les grands programmes d’observation, et il va être directement testé dans les prochaines années, voire peut-être dès la fin de l’année 2018, grâce aux expériences Gbar, Alpha-g et AEgIS au Cern, qui vont enfin mesurer la masse gravitationnelle de l’antimatière, assure Gabriel Chardin. Nous saurons alors si l’explication proposée d’un Univers matière-antimatière, guidée par ses arguments d’élégance mathématique et physique, est bien confirmée par l’expérience. » ♦
___________________________________________
Peser l’antimatière : lourde tâche !
L’antimatière posséderait une masse négative et se comporterait différemment de la matière quand elle est soumise à la gravité. Cette hypothèse, proposée par le physicien Gabriel Chardin, est plausible, mais très audacieuse. Car si l’on maîtrise désormais assez bien la production d’antiprotons dans les accélérateurs, « peser » ces antiparticules chargées négativement est presque impossible tant l’effet de la gravité est négligeable par rapport à celui de l’interaction électromagnétique. Un moyen de neutraliser cette force consiste à créer des atomes neutres d’antihydrogène en combinant un antiproton et un positron (anti-électron). La difficulté est alors de parvenir à confiner et ralentir ces anti-atomes avant qu’ils rencontrent des atomes de matière et qu’ils s’annihilent. En utilisant un piège magnétique, la collaboration Alpha du Cern est parvenue récemment à confiner pendant plusieurs heures un millier d’antihydrogènes. D’ici à la fin de l’année, Alpha va tenter de déterminer ce qui se passe exactement quand on « lâche » ces anti-atomes dans un champ gravitationnel. À suivre…
Lire aussi :
L’Insoutenable gravité de l’Univers, Gabriel Chardin, coll. « Essais-Manifeste », Éditions Le Pommier, 2018, 464 p., 25 €
Commentaires
Il me semble que l´on fait
jean jarogh le 30 Octobre 2019 à 23h56La contradiction interne dont
jean jarogh le 31 Octobre 2019 à 00h05J avoue que dans les
elektek am le 1 Février 2020 à 10h25Alain Menier
elektek am le 2 Février 2020 à 15h49Merci pour cet article.
Odelag le 4 Décembre 2022 à 06h56Pages
Connectez-vous, rejoignez la communauté
du journal CNRS